Designing a pattern recognition system on GPU for discriminating between patients with micro-ischaemic and multiple sclerosis lesions, using MRI images
نویسندگان
چکیده
The aim of this study was to employ state-of-art graphics processing unit (GPU) technology and CUDA parallel programming to design and implement a stand-alone pattern recognition (PR) system to discriminate between patients with microischaemic (mIS) and multiple sclerosis (MS) lesions. The dataset comprised MRI image series of 32 patients with mIS and 19 with MS lesions. The probabilistic neural network classifier and 40 textural features, calculated from lesions in the magnetic resonance imaging (MRI) images, were used to design the PR system. The highest classification accuracy was 90.2%, employing six textural features. It took about 135 minutes to design the PR system on a desktop CPU (Intel Core 2 Quad Q9550), using sequential programming, against 250 seconds on the Nvidia 8800GT GPU card, using parallel programming. The proposed PR system may be redesigned on site, when new verified data are incorporated in its depository, and it may serve as a second opinion tool in a clinical environment.
منابع مشابه
The Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملMagnetic Resonance Imaging of Central Nervous System and Paranasal Sinuses in Multiple Sclerosis Patients: Findings from a Survey of Clinical Records in Kermanshah Province
Background and Objectives: Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system with more than 5.2 million people across the world being afflicted with. Magnetic Resonance Imaging (MRI) is a valuable tool in the diagnosis of MS. This study surveys the results of MRI of the central nervous system and paranasal sinuses in the sample of MS patients in Ker...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJHPCA
 
دوره 27 شماره
صفحات -
تاریخ انتشار 2013